Mount Charles School Multiplication and Division Objective. K-Knowledge. S-Skills							
	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
New Vocabulary	Odd, even Double, halve Share, share equally Group in pairs Divide	equal groups row array column double once, twice, three times, five times share count in tens (forwards from/backwards from) How many times? Lots of, groups f Multiple of, times, multiply by Repeated addition Group in twos, threes etc Divided by, left, left over.	Multiplication Times divide (\div) even odd	multiple approx. approximately multiplication sentence repeated addition division statement times-table remainder division fact product multiples of four, eight, fifty and one hundred scale up	Commutative Multiplication facts (up to 12×12) Division facts Inverse derive	Factor, factor pairs prime number composite number square number cube number inverse operation formal written method	Long division Recurring decimal Order of operations Common factors, common multiples
		count in multiples of twos, fives and tens (copied from Number and Place Value) K - multiples of 2,5 and 10 K - vocab multiple, lots of S - add 2,5 and 10 to a number		count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value) K - order of multiples of $4,8,50$ and 100 K - counting in 4 is double counting in 2	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value) K - multiples of 6 , $7,9,25,1000$ K - order of multiples of 6, 7, 9, 25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value) $\begin{aligned} & \text { K - multiply by } \\ & 10,100,1000,10 \\ & 000,100000 \end{aligned}$	

		$\begin{aligned} & S \text { - count in } \\ & \text { multiples of } 2,5,10 \end{aligned}$		K - counting in 8 is double counting in 4 S - count in multiples of $4,8,50$ and 100 S - double multiples of 4 and 8 recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables K - multiplication facts for the 3,4 , and 8 multiplication tables K - division facts for the 3,4 , and 8 multiplication tables S - recalling the multiplication and division facts for the 3,4 and 8 times tables. S - use appropriate facts to problem solve	K - counting in 6s in double counting in 3s K - pattern of 25,50,75,100 S - counting in multiples of 6,7, 9 , 25, 1000 S - double multiples of 3 recall multiplication and division facts for multiplication tables up to $12 \times$ 12 K - multiplication facts up to 12×12 K - division facts up to 12×12 S - recalling the multiplication and division facts up to 12×12. S - use appropriate facts to problem solve	K - order of numbers to 1000000 S - counting forwards and backwards to 1000 000 S - multiplying any number by 10, 100, 1000, 10 000, 100 000	
	Begins to conceptually subitise larger numbers by subitising smaller		show that multiplication of two numbers can be done in any order	write and calculate mathematical statements for multiplication and division using the	use place value, known and derived facts to multiply and divide mentally,	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers

					K - multiplication and division facts up to 12×12 S - recognise and use factor pairs and commutatively in mental calculations.		
			calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs $\mathrm{K}-\mathrm{x}$ equals multiplication, \div equals and = is the same is equals K - multiplication and division facts for 2,5 and 10 times tables S - calculate mathematical statements for multiplication and	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Mental Methods) K - multiplication and division facts for the $2,3,4,5,8$ and 10 times table K - mental methods for multiplying and dividing 2 digit numbers by 1 digit numbers K - written method for multiplying and dividing	multiply two-digit and three-digit numbers by a onedigit number using formal written layout K - multiplication facts up to 12×12 K - formal written layout for multiplying K - place value knowledge numbers to 100 S - apply knowledge of formal written method accurately S - apply knowledge of multiplication facts up to 12×12 accurately	multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers K -formal written methods for long multiplication K - place value knowledge of numbers to 1000 S - apply knowledge of long multiplication accurately divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders	divide numbers up to 4digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context K - formal written method of short division up to 4 digits by a two-digit whole number. K - formal written method of long division K - how to interpret remainders as whole numbers, fractions or by rounding

			division within the multiplication tables S - write statements using $\mathrm{X},=$ and \div signs	S - apply mental and written methods for multiplication and division.		appropriately for the context K - formal written method of short division up to 4 digits by a one-digit number K - concept of remainders K - contexts where remainders would be appropriate K - division facts S - apply knowledge of short division accurately S - interpret remainders based on the context	K - which method for interpreting remainders is appropriate S -apply knowledge of short and long division accurately. S - interpreting remainders as whole numbers, fractions or by rounding as appropriate based on the context. S - choose appropriate method for the problem use written division methods in cases where the answer has up to two decimal places (copied from Fractions (including decimals))
	Begins to conceptually subitise larger numbers by subitising smaller groups within the number, e.g. sees six raisins on a plate as three and three				recognise and use factor pairs and commutativity in mental calculations (repeated) K- how to use the law of commutativity K - a factor pair is two numbers that multiply to get a product	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. K- what a common factor is K - how to identify multiples and factors K - how to work logically	identify common factors, common multiples and prime numbers K - definition of common multiples S - identify common factors, common multiples and prime numbers. use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)

						S - use knowledge to decide whether a number is prime S - recall prime numbers up to 19 recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$) K - what square and cube numbers are K - ${ }^{2}$ represents squared K - ${ }^{3}$ represent cubed S - recognise square and cube numbers S - use the correct	and cuboids using standard units, including centimetre cubed (cm ${ }^{3}$) and cubic metres (m^{3}), and extending to other units such as mm^{3} and km^{3} (copied from Measures)
							use their knowledge of the order of operations to carry out calculations involving the four operations K - order of operations (BIDMAS) S - apply knowledge of order of operations to carry out calculations
历				estimate the answer to a calculation and use	estimate and use inverse operations to		answers to calculations

				inverse operations to check answers (copied from Addition and Subtraction) K - mental calculation methods for addition, subtraction, multiplication and division K - inverse relationship between multiplication and division K - value of numbers S - use appropriate inverse operation for the calculation S - estimate the answer to a calculation	check answers to a calculation (copied from Addition and Subtraction) Same as Year 3		and determine, in the context of a problem, levels of accuracy K - multiplication and division facts up to 12×12 K - how to multiply and divide by $10,100,1000$ and 10,000 S - to use known facts to use estimation to check answers to calculations.
$\begin{aligned} & \text { 무 } \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & 3 \\ & 0 \\ & 0 \\ & \frac{0}{5} \\ & 0 \end{aligned}$		solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division See Year 5

		and arrays with the support of the teacher K- to count concrete objects and pictorial representations accurately. K - an array is used to help understanding when counting in groups S - one to one correspondence S- to subitise accurately S - solve one-step problems involving multiplication and division S - calculate an answer using concrete objects, pictorial representations and arrays with the support of the teacher.	and division facts, including problems in contexts K - how to read arrays K - count in multiples of 2,5 and 10. K- multiplication facts for 2, 5 and 10. K - vocabulary for multiplication and division K - range of appropriate contexts for multiplication and division. K - how to use a bar model to represent multiplication and division S - use materials, arrays, repeated addition, mental methods and multiplication and division facts to solve problems.	problems in which n objects are connected to m objects K - how to use a bar model to show positive integer scaling and correspondence problems K - multiplication and division facts of the $2,3,4,5,8$ and 10 times tables. S - apply knowledge of multiplication and division to solve problems S - use mental and written methods accurately. S- use bar model accurately to represent integer scaling problems and correspondence problems	scaling problems and harder correspondence problems such as n objects are connected to m objects K - how to multiply two-digit numbers by one-digit numbers using the distributive law. K - multiplication and division facts to 12×12 S - solve problems that involve multiplying and adding S - apply the distributive law to multiply two-digit numbers by onedigit numbers.	K - factors, multiples, square and cubes (See above) K - variety of mental methods for multiplicand and division K - formal written methods for multiplication and division S- apply knowledge of factors, multiples, squares and cubes to solve multiplication and division problems. S-use formal written methods accurately. solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign K - equals sign means the same as	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

(s)

